skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Wright, Heather"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. When volcanic unrest occurs, the scientific community can advance fundamental understanding of volcanic systems, but only with coordination before, during, and after the event across academic and governmental agencies. To develop a coordinated response plan, the Community Network for Volcanic Eruption Response (CONVERSE) orchestrated a scenario exercise centered around a hypothetical volcanic crisis in Arizona’s San Francisco Volcanic Field (SFVF). The exercise ran virtually from February 4 to March 4, 2022. Over 60 scientists from both academic and governmental spheres participated. The scenario exercise was assessed for its effectiveness in supporting collaborative production of knowledge, catalyzing transdisciplinary collaboration, supporting researcher confidence, and fostering a culture of inclusion within the volcanology community. This identified a need to support early career researchers through community and allyship. Overall, the 2022 CONVERSE exercise demonstrated how a fully remote, extended scenario can be authentically implemented and help broaden participation within the volcano science community. 
    more » « less
  2. Abstract Following rapid decompression in the conduit of a volcano, magma breaks into ash- to block-sized fragments, powering explosive sub-Plinian and Plinian eruptions that may generate destructive pyroclastic falls and flows. It is thus crucial to assess how magma breaks up into fragments. This task is difficult, however, because of the subterranean nature of the entire process and because the original size of pristine fragments is modified by secondary fragmentation and expansion. New textural observations of sub-Plinian and Plinian pumice lapilli reveal that some primary products of magma fragmentation survive by sintering together within seconds of magma break-up. Their size distributions reflect the energetics of fragmentation, consistent with products of rapid decompression experiments. Pumice aggregates thus offer a unique window into the previously inaccessible primary fragmentation process and could be used to determine the potential energy of fragmentation. 
    more » « less